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■  Find all matching samples for the probe 
•  Example: U.S. Department of State Face Recognition System 

 

Types of 1:N Matching Scenarios 

Probe Reference Database 

Search Want 

Candidate List 

1 
2 
3 

…

Reference Database Probe 

Search Want 
…

1 
Candidate List 

Multiple samples of same person (i.e., multiple mates) 

Common to use ROC Analysis to evaluate matchers for these scenarios 

■  Find (at least) one matching sample of the probe 
•  Example: Access control, watch-list 
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Matcher for Study  

■  Noblis Research Algorithm1 

•  Deep learning approach 
•  Template: 1280 bytes 
•  Search 1M templates ~10s 
•  C++ w/o licensing restrictions 
•  Available for transition to 

Government 

■  Performance 
•  TMR @ FMR = 0.1%: 70% 

Contact 
Dr. Mark Burge: 
Jordan Cheney: 

mark.burge@noblis.org 
jordan.cheney@noblis.org  1 Sponsored by Noblis Internal Research (NSR) 

2 http://www.cbsr.ia.ac.cn/users/scliao/projects/blufr/  

Recognition Performance on the Benchmark of Large-
scale Unconstrained Face Recognition (BLUFR) 
dataset.2 
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1:1 Verification 

Genuine Comparison 

Impostor Comparison 

Compare 

Score 

Score 

Compare 

Probe Reference 

0.87 

0.24 

To genuine (mate) scores 
(Compute TAR) 

To impostor (non-mate) scores 
(Compute FAR) 

Variable: How many comparisons? 

Variable: How many comparisons? 

ROC: TAR vs. FAR 
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Receiver Operating Characteristic (ROC) Analysis (1:1) 

■  1:1 Verification 
•  Measured error rates are generally independent of scale of operations 

For 1:1 verification, the ROC enables operational performance estimates 
 from representative test data.  

Test #Genuines #Impostors 
A 2,500 100,000 
B 10,000 200,000 
C 15,000 400,000 

Match scores obtained from Noblis research FR 
algorithm on a frontal face dataset 

Increasing test scale improves 
measurement accuracy 
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Rank ID Score 
1 0.542 
2 0.537 
3 0.515 
4 0.495 
5 0.489 
… … 
50 0.322 

Ranked Candidate list 

Rank ID Score 
1 0.931 
2 0.722 
3 0.613 
4 0.602 
5 0.586 
… … 
50 34 0.322 

Genuine Search 

Impostor Search 

Probe 

Reference Database 

 1:N Identification 

Genuine 
Scores 

(Compute TAR) 

Impostor 
Scores 

(Compute FAR) 

Impostor 
Scores 

(Compute FAR) 

Variable: How many mates? 

Variable: How many searches? 

Variable: How large? 
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■  1:N Identification 
•  For matcher scores that are strictly dependent on the probe and reference 

sample, measured error rates generally independent of test configurations. 
–  e.g., ​𝐹𝐴𝑅↓𝑁 =1−​(1−𝐹𝐴𝑅)↑𝑁 ≅𝑁∙𝐹𝐴𝑅1  1  

Receiver Operating Characteristic (ROC) Analysis (1:N) 

Not all 1:N matchers function this way! 

Test Test Description 
A Gallery: 0, 1, 2, … mates 

B Gallery: 0 or 1 mates 

C (A) with additional mates 

D (A) with larger gallery 

E (A) without impostor searches 

F (A) with additional impostor searches 

Match scores obtained from Noblis research FR 
algorithm on a frontal face dataset 

All tests perform 
similarly 

1 Jain, A., Ross, A., and Prabhakar, S., “An Introduction to Biometric Recognition”, IEEE Transactions on Circuits and Systems for Video Technology, 2014 

Many different  
test configurations 
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Rank ID Score 
1 0.931 

2 0.722 

3 0.613 

4 0.602 

5 0.586 

6 0.542 

7 0.521 

… … 

49 0.335 

50 0.322 

Search 

 1:N Identification with Gallery Normalization 

Normalize 

Rank ID Nmzd. Score 
1 0.991 

2 0.715 

3 0.598 

4 0.581 

5 0.565 

6 0.491 

7 0.355 

… … 

49 0.192 

50 0.187 

A 1:N matcher with gallery normalization may “boost” high scores and “suppress” low scores based 
on rank position. Note in our example we simply boosted the rank-1 score and suppressed the others. 

Why do this? 

Rank-1 score 
higher valued 

Low rank 
scores lower 

valued 

Candidate List Normalized Candidate List 
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Normalization Can Improve ROC Performance 

Normalization improved 
test  performance 

Note: We have seen results like this from other matchers. 
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Rank ID Nmzd. Score 
1 0.991 
2 0.815 
3 0.568 
4 0.541 
5 0.515 
6 0.491 

Potential Pitfalls 

Algorithm A (Normalized) 

Algorithm returns mates at top ranks in candidate list.  
(desirable for identification, not captured by ROC) 

Rank ID Nmzd. Score 
1 0.788 
2 0.575 
3 0.559 
4 0.552 
5 0.538 
6 0.512 
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But, lower rank genuine scores suppressed 
compared to impostor scores. 

(decreases TAR, ROC performance) 

Boosting of high rank impostor scores increases FAR. 
More impostor searches à Lower performance 

Fewer impostor searches à Higher performance 



11 11 © 2016 Noblis, Inc.  

Matcher Performance (with Normalization) may  
Depend on Test Configuration 

Here, matcher performance is dependent on test configuration 

Decreased performance at larger N 

Decreased performance 
with more mates 

Decreased performance with 
more impostor searches 

Note: We have seen results like this from other matchers. 

Increased performance  
with 0 or 1 mate 
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Mates Returned in Operational Open-set 1:N System 

0 1 2 3 4 5+ 

Challenge: Developing a Test Gallery 

■  How to appropriately model the distribution of mates per probe? 
■  How to appropriately model the proportion of genuine / impostor searches? 

What can be created for testing Information from the system ≠ 

How to Scale? 
•  Mates per search 
•  Impostor searches 

Could be impostor search or error  

1

2
3

4

05+ 

True mate count is uncertain 



13 13 © 2016 Noblis, Inc.  

What does this mean? 

■  Dependent Results 
•  Impact: extrapolating performance 
•  Impact: comparing multiple matching algorithms 
 

■  Modeling Issues  
•  Size of test database 
•  Distribution of mates for genuine searches (how to scale from operations?) 
•  Proportion of genuine and impostor searches (how to measure from operations?) 
•  Interaction-effects (e.g., demographics) 

■  Best Practices for 1:N Testing 
•  (Current): Requires execution of searches with and without mates1,2 

•  (Not Present): Guideline regarding the proportion of mated searches 
•  (Not Present): Guideline regarding proportion of mates in test database 

 
1 Grother, P., Ngan, M., “Face Recognition Vendor Test (FRVT), Performance of Face Identification Algorithms”, NIST Interagency Report 8009, May 2014 
2 Grother, P., Quinn, G., and Phillips, P., “Report on the Evaluation of 2D Still-image Face Recognition Algorithms”, NIST Interagency Report 7709, 2010 
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Is ROC Analysis Appropriate? 

1 Grother, P., Ngan, M., “Face Recognition Vendor Test (FRVT), Performance of Face Identification Algorithms”, NIST Interagency Report 8009, May 2014 
2 Grother, P., Quinn, G., and Phillips, P., “Report on the Evaluation of 2D Still-image Face Recognition Algorithms”, NIST Interagency Report 7709, 2010 

ROC Analysis FPIR / FNIR / CMC1,2 

Target Scenario 
(examples) 

Find all mates 
(e.g., fraud detection) 

Find any mate 
(e.g., watch-list) 

Properties Per-comparison credit 
Based on match scores 

Per-search credit 
Based on rank and match scores 

Weaknesses Sensitivity to normalization 
May be dependent on N 

Sensitivity to normalization 
Dependent on N 

Common Metrics for Evaluation 
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Recommendations 

■  For Developers / Vendors 
•  Keep normalizing! 
•  Be cognizant of customer needs 

■  For Operators (and Evaluators) 
•  Communicate system specifications and evaluation criteria with developers 
•  Identify objectives 

–  Value (cost) of finding one vs. some vs. all mates 
–  Operating point; Error trade-off 

■  For Evaluators Estimating Operational Performance from Test Data 
•  Compose test sets to mimic application specific characteristics 
•  Test on full-scale system when possible 

■  For Evaluators Comparing Matching Algorithms 
•  Perform sensitivity analysis (varying test configurations) 
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Questions? 
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